Skip to content

RPICT4V3 Version 2 & 3

RPICT4V3 is a Raspberry Pi hat for three phase energy monitoring.

This product is discontinued.

This page is for board specific information. More information can be found on the generic page for RPICT series.

Overview

  • 4 AC current sensors.
  • 3 AC Voltage sensors.
  • Compute real power.
  • Fit on Raspberrypi 4 holes mounting pattern.
  • AtMega328 Mcu (Arduino UNO)
  • MCP3208 12 bits ADC
  • Stackable (up to 5 boards together)

A typical application for the RPICT4V3 is 3 phase systems power reading. The 3 voltages are coupled with 3 CT to perform power computation on each line.

Three phase diagram connecting current sensors for energy monitoring.

Compatibility

Version Compatible?
Raspberrypi 1 A No
Raspberrypi 1 B+ Yes
Raspberrypi 2 B Yes
Raspberrypi 3 B Yes
Raspberrypi 3 B+ Yes
Raspberrypi 4 B Yes
  • Asus Tinkerboard has been reported to work with RPICT units. Note we won't be able to provide support for the Tinkerboard.
  • AC Current sensor:
    • SCT-013-000
    • SCT-019
    • SCT-006
  • AC Voltage sensor:
    • UK: 77DB-06-09
    • EU: 77DE-06-09
    • US: 77DA-10-09

VOLTAGE OUTPUT CT SUCH AS SCT-013-030 and other SCT-013-0XX ARE NOT COMPATIBLE WITH THIS BOARD. Only use the SCT-013-000 which is a current output CT.

RPICT4V3 connected to four current transformers and three voltage sensors.

Stacking Configuration

General stacking information is described in the RPICT stacking page. RPICT_Stacking

Software Configuration

Legacy firmware

For any units ordered before the 1st of February 2022 the firmware version is version 3.
Please upgrade to firmware version 4.

Upgrading to sketch version 4

Configuration via web interface

First make sure the lcl-package is installed if not done already.

wget lechacal.com/RPICT/tools/lcl-rpict-package_latest.deb
sudo dpkg -i lcl-rpict-package_latest.deb

Now starts a server instance on the Raspberrypi using.

lcl-server.sh

You can now access the Raspberrypi configuration server if you point your browser to the link below

http://raspberrypi:8000/

You can now edit the configuration.

RPICT Configuration web tool for in depth monitoring of energy

An online version of this web interface exists on this link below.

http://lechacal.com/RPICT/config/generator/latest/index.html

Because the RPICT4V3 version3 does not support auto reset you must use press the white button just after having clicked on the upload to device button.

Configuration via command line

The documentation for serial configuration can be found on this page.
Over_Serial_Configuration_-_Sketch_4
The tool to upload the configuration is called lcl-rpict-config.py. To read the configuration use

lcl-rpict-config.py -a

This produce the /tmp/rpict.conf file containing the configuration of the device.

One can modify this file and write it back using

lcl-rpict-config.py -a -w /tmp/rpict.conf

Files

Unit are sold with the sketch below already loaded.

Default Sketch V4.2.1.

If needed this sketch can be loaded directly from the Raspberrypi following this guide and executing the commands below.

wget lechacal.com/RPICT/sketch/RPICT_MCP3208_V3_v4.2.1.ino.hex
lcl-upload-sketch RPICT_MCP3208_V3_v4.2.1.ino.hex

Simple Python Example

The example python script below will work well with the default configuration.

 import serial
 ser = serial.Serial('/dev/ttyAMA0', 38400)

 try:
        while 1:
             # Read one line from the serial buffer
             line = ser.readline().decode().strip()

             # Create an array of the data
             Z = line.split(' ')

             # Print it nicely
             if len(Z)>10:
                 print ("----------")
                 print ("          \tCT1\tCT2\tCT3\tCT4")
                 print ("Vrms     :\t%s\t%s\t%s\t%s" % (Z[8], Z[9], Z[10], ""))
                 print ("RealPower:\t%s\t%s\t%s\t%s" % (Z[1], Z[2], Z[3], ""))
                 print ("Irms     :\t%s\t%s\t%s\t%s" % (Z[4], Z[5], Z[6], Z[7]))


 except KeyboardInterrupt:
        ser.close()

To run this first of all make sure you have python-serial package installed

sudo apt-get install python3-serial

Then run the command below to download the script.

wget lechacal.com/RPICT/example/RPICT4V3_DEMO_03.py.zip
unzip RPICT4V3_DEMO_03.py.zip

and run it using

python RPICT4V3_DEMO_03.py

Data Output

The default data output is:

NodeID P1 P2 P3 Irms1 Irms2 Irms3 Irms4 Vrms1 Vrms2 Vrms3

Real Powers are computed using the following rules:

P1 -> CT1 & V1
P2 -> CT2 & V2
P3 -> CT3 & V3
Irms4 -> CT4
P1, P2 and P3 are active power (or real power).

These rules can be modified in the configuration if needed.

Other output type can be streamed out. This should be configured in the unit.

All outputs type available are

  • Vrms (V)
  • Irms (A)
  • Real Power (W)
  • Apparent Power (W)
  • Power Factor
  • Estimated Power

Restore Default Config

You should have received a key when acquiring the unit. Use this key to download and restore the default configuration. If the key was XXXX then execute these commands below. Replace XXXX with your own key.

wget lechacal.com/hardware/c/XXXX.conf
lcl-rpict-config.py -w XXXX.conf

Emoncms Config (Emonhub)

Make sure you read this first.

For default configuration.

[[/11|11]]
nodename = RPICT4V3
hardware = RPICT4V3
[[[rx]]]
names = P1,P2,P3,Irms1,Irms2,Irms3,Irms4,Vrms1,Vrms2,Vrms3
datacode = 0
scales = 1,1,1,1,1,1,1,1,1,1
units = W,W,W,A,A,A,A,V,V,V

Enclosure

Enclosures kit are available as a 3D printed product. Link to the shop.

Both Raspberrypi 3 and 4 format are available.

3D printed enclosure for three phase energy monitoring system.

Howto_setup_Raspbian_for_serial_read

Gen3_Passive_Component_Setup

Calibration VCAL ICAL PHASECAL

Update RPICT firmware (CT7V1-CT4V3-CT8)

Use Emonhub with RPICT