RPICT4V3 v2.0: Difference between revisions

From lechacal
Jump to navigation Jump to search
 
(78 intermediate revisions by the same user not shown)
Line 1: Line 1:


RPICT4V3 Version 2
RPICT4V3 Version 2 & 3


[[File:IMG_1241_small.png | right | 300px]]
[[File:IMG_1241_small.png | right | 300px]]


[http://lechacalshop.com/fr/internetofthing/32-raspberrypi-7x-current-sensor-adaptor-1-voltage-emoncms.html Link to shop]
[[File:Link_to_the_shop.png | link=http://lechacalshop.com/fr/internetofthing/32-raspberrypi-7x-current-sensor-adaptor-1-voltage-emoncms.html ]]


This page is for board specific information. More information can be found on the [[Raspberrypi_Current_and_Temperature_Sensor_Adaptor | generic page for RPICT series]].
This page is for board specific information. More information can be found on the [[Raspberrypi_Current_and_Temperature_Sensor_Adaptor | generic page for RPICT series]].


* 8 AC current sensors.
=Overview=
* 4 AC current sensors.
* 3 AC Voltage sensors.
* Compute real power.
* Compute real power.
* Fit on Raspberrypi 4 holes mounting pattern.
* Fit on Raspberrypi 4 holes mounting pattern.
* AtMega328 Mcu (Arduino UNO)
* AtMega328 Mcu (Arduino UNO)
* MCP3208 ADC
* MCP3208 12 bits ADC
* Stackable (up to 5 boards together)
* Stackable (up to 5 boards together)
A typical application for the RPICT4V3 is 3 phase systems power reading. The 3 voltages are coupled with 3 CT to perform power computation on each line.
[[File:3_phase_diagram_rpict4v3.png | 600px]]


=Compatibility=
=Compatibility=
Line 35: Line 41:
|-
|-
|Raspberrypi 3 B+
|Raspberrypi 3 B+
|Partially (Contact shop if required) [[RPICT Compatibility with B+ | More info here]].
|Yes
|-
|Raspberrypi 4 B
|Yes
|-
|-
|}
|}
* Asus Tinkerboard has been reported to work with RPICT units. Note we won't be able to provide support for the Tinkerboard.
==Recommended sensors==
==Recommended sensors==
* AC Current sensor: SCT-013-000
* AC Current sensor:  
** SCT-013-000
** SCT-019
** SCT-006
* AC Voltage sensor:  
* AC Voltage sensor:  
** UK: 77DB-06-09
** UK: 77DB-06-09
** EU: 77DE-06-09
** EU: 77DE-06-09
** US: 77DA-10-09
** US: 77DA-10-09
VOLTAGE OUTPUT CT SUCH AS SCT-013-030 and other SCT-013-0XX ARE NOT COMPATIBLE WITH THIS BOARD. Only use the SCT-013-000 which is a current output CT.


[[File:IMG_1239_small.png | 240px]]
[[File:IMG_1239_small.png | 240px]]
Line 51: Line 69:
General stacking information is described in the RPICT stacking page.<br>
General stacking information is described in the RPICT stacking page.<br>
[[RPICT_Stacking]]
[[RPICT_Stacking]]


==Software Configuration==
==Software Configuration==
===Legacy firmware===
For any units ordered before the 1st of February 2022 the firmware version is version 3. Follow this link below for configuration. If possible upgrade to firmware version 4.<br>
[[Before 1st March 22 RPICT4V3 Version 3 Configuration]]<br>
[[Upgrading to sketch version 4]]
===Configuration via web interface===
First make sure the lcl-package is installed if not done already.
wget lechacal.com/RPICT/tools/lcl-rpict-package_latest.deb
sudo dpkg -i lcl-rpict-package_latest.deb
Now starts a server instance on the Raspberrypi using.
lcl-server.sh
You can now access the Raspberrypi configuration server if you point your browser to the link below
http://raspberrypi:8000/
You can now edit the configuration.
[[File:Screenshot_2021-11-01_20-22-56.png | 450px]]
An online version of this web interface exists on this link below.
http://lechacal.com/RPICT/config/generator/v1.0.3/index.html
Because the RPICT4V3 version3 does not support auto reset you must use press the white button just after having clicked on the upload to device button.


Using a serial line terminal program one can configure the following:
===Configuration via command line===
- Polling interval
- Output format (csv or emoncms)
- Calibration values (Voltage and Current)
- Voltage/current combinations for real power computation.
- Output channels


The documentation for serial configuration can be found on this page. <br>
The documentation for serial configuration can be found on this page. <br>
[[Over Serial Configuration - Sketch 2.2]]<br>
[[Over_Serial_Configuration_-_Sketch_4]]<br>
[[Over Serial Configuration - Sketch 2.3]]<br>
 
[[Over Serial Configuration - Sketch 2.4]]<br>
The tool to upload the configuration is called lcl-rpict-config.py.
[[Over Serial Configuration - Sketch 2.5]]<br>
To read the configuration use
[[Over Serial Configuration - Sketch 2.6]]<br>
lcl-rpict-config.py -a
[[Over Serial Configuration - Sketch 2.8]]<br>
This produce the /tmp/rpict.conf file containing the configuration of the device.
 
One can modify this file and write it back using
lcl-rpict-config.py -a -w /tmp/rpict.conf
 
==Files==
 
Unit are sold with the sketch below already loaded.
 
[http://lechacal.com/RPICT/sketch/RPICT_MCP3208_V3_v4.1.0.ino Default Sketch V4.1.0.]<br>
 
 
If needed this sketch can be loaded directly from the Raspberrypi following [[Upload_Arduino_sketch_from_Raspberrypi_to_RPICT | this guide]] and executing the commands below.
wget lechacal.com/RPICT/sketch/RPICT_MCP3208_V3_v4.1.0.ino.hex
lcl-upload-sketch RPICT_MCP3208_V3_v4.1.0.ino.hex
 
==Simple Python Example==
The example python script below will work well with the default configuration.
<syntaxhighlight lang="python">
 
import serial
ser = serial.Serial('/dev/ttyAMA0', 38400)
try:
        while 1:
            # Read one line from the serial buffer
            line = ser.readline().decode().strip()
            # Create an array of the data
            Z = line.split(' ')
            # Print it nicely
            if len(Z)>10:
                print ("----------")
                print ("          \tCT1\tCT2\tCT3\tCT4")
                print ("Vrms    :\t%s\t%s\t%s\t%s" % (Z[8], Z[9], Z[10], ""))
                print ("RealPower:\t%s\t%s\t%s\t%s" % (Z[1], Z[2], Z[3], ""))
                print ("Irms    :\t%s\t%s\t%s\t%s" % (Z[4], Z[5], Z[6], Z[7]))
                       
except KeyboardInterrupt:
        ser.close()


[[File:Online_config_01.png | 300px| link=http://lechacal.com/RPICT/config/generator/v2.0/]] Starting from sketch 2.4 the board can be configured with the [http://lechacal.com/RPICT/config/generator/v2.0/ online configurator].
</syntaxhighlight>
To run this first of all make sure you have python-serial package installed


$ sudo apt-get install python3-serial


[[File:IMG_1238_small.png | right | 350px]]


==Files==
Then run the command below to download the script.
wget lechacal.com/RPICT/example/RPICT4V3_DEMO_03.py.zip
unzip RPICT4V3_DEMO_03.py.zip
and run it using
python RPICT4V3_DEMO_03.py
 
==Data Output==
 
The default data output is:


===Default Sketch===
NodeID P1 P2 P3 Irms1 Irms2 Irms3 Irms4 Vrms1 Vrms2 Vrms3


[http://lechacal.com/RPICT/7CT1V/RPICT7V1_v2_5.ino Default Sketch V2.5.]<br>
Real Powers are computed using the following rules:


[http://lechacal.com/RPICT/7CT1V/RPICT7V1_v2_6_3.ino Default Sketch V2.6.]<br>
P1 -> CT1 & V1<br>
P2 -> CT2 & V2<br>
P3 -> CT3 & V3<br>
Irms4 -> CT4<br>


[http://lechacal.com/RPICT/7CT1V/RPICT7V1_v2_7_1.ino Default Sketch V2.7.1.]<br>
P1, P2 and P3 are active power (or real power).


[http://lechacal.com/RPICT/7CT1V/RPICT7V1_v2_8_0.ino Default Sketch V2.8.0.]<br>
These rules can be modified in the configuration if needed.


<small>(note boards are sold already flashed with latest firmware).</small>
Other output type can be streamed out. This should be configured in the unit.  


===noOSC Sketch===
All outputs type available are
The Default sketch allows up to 28 computation nodes to be run. If more are needed for higher stacks then we recommend to use the noOSC sketch. This is the same as the default sketch but Over Serial Configuration (OSC) as been removed to allow up to 40 nodes to be computed. Configuration has to be edited in the sketch.
* Vrms (V)
* Irms (A)
* Real Power (W)
* Apparent Power (W)
* Power Factor
* Estimated Power


[http://lechacal.com/RPICT/7CT1V/RPICT_noOSC_v1_0.ino noOSC Sketch v1.0]<br>
==Restore Default Config==
[http://lechacal.com/RPICT/7CT1V/RPICT_noOSC_v1_1.ino noOSC Sketch v1.1]<br>


You should have received a key when acquiring the unit. Use this key to download and restore the default configuration.<br>
If the key was XXXX then execute these commands below. Replace XXXX with your own key.


[[File:IMG_1236_small.png | 350px]]
$ wget lechacal.com/hardware/c/XXXX.conf
$ lcl-rpict-config.py -w XXXX.conf


==Emoncms Config (Emonhub)==
==Emoncms Config (Emonhub)==


Make you read [[Raspberrypi_Current_and_Temperature_Sensor_Adaptor#Using_Emoncms | this]] first.
Make sure you read [[Raspberrypi_Current_and_Temperature_Sensor_Adaptor#Using_Emoncms | this]] first.


For default configuration.  
For default configuration.  
Line 107: Line 209:
     hardware = RPICT4V3
     hardware = RPICT4V3
     [[[rx]]]
     [[[rx]]]
         names = Vrms1,Vrms2,Vrms3,Realpower1,Realpower2,Realpower3,Realpower4
         names = P1,P2,P3,Irms1,Irms2,Irms3,Irms4,Vrms1,Vrms2,Vrms3
         datacode = 0
         datacode = 0
         scales = 1,1,1,1,1,1,1
         scales = 1,1,1,1,1,1,1,1,1,1
         units = V,V,V,W,W,W,W
         units = W,W,W,A,A,A,A,V,V,V
 
==Enclosure==
 
Enclosures kit are available as a 3D printed product. [http://lechacalshop.com/gb/internetofthing/41-enclosure-kit-for-rpict4v3.html Link to the shop].
 
Both Raspberrypi 3 and 4 format are available.
 
[[File:Enclosure-kit-for-rpict4v3.jpg| 300px]]




[[File:Emoncms_channels.png]]


==Related Pages==
==Related Pages==


[[Howto_setup_Raspbian_for_serial_read]]
[[Howto_setup_Raspbian_for_serial_read]]
[[Gen3_Passive_Component_Setup]]


[[How to calibrate the Voltage Port]]
[[How to calibrate the Voltage Port]]


[[Update RPICT firmware (CT7V1/CT4V3/CT8)]]
[[Update RPICT firmware (CT7V1/CT4V3/CT8)]]
[[Use Emonhub with RPICT]]

Latest revision as of 09:11, 13 September 2022

RPICT4V3 Version 2 & 3

This page is for board specific information. More information can be found on the generic page for RPICT series.

Overview

  • 4 AC current sensors.
  • 3 AC Voltage sensors.
  • Compute real power.
  • Fit on Raspberrypi 4 holes mounting pattern.
  • AtMega328 Mcu (Arduino UNO)
  • MCP3208 12 bits ADC
  • Stackable (up to 5 boards together)

A typical application for the RPICT4V3 is 3 phase systems power reading. The 3 voltages are coupled with 3 CT to perform power computation on each line.

Compatibility

Version Compatible?
Raspberrypi 1 A No
Raspberrypi 1 B+ Yes
Raspberrypi 2 B Yes
Raspberrypi 3 B Yes
Raspberrypi 3 B+ Yes
Raspberrypi 4 B Yes
  • Asus Tinkerboard has been reported to work with RPICT units. Note we won't be able to provide support for the Tinkerboard.

Recommended sensors

  • AC Current sensor:
    • SCT-013-000
    • SCT-019
    • SCT-006
  • AC Voltage sensor:
    • UK: 77DB-06-09
    • EU: 77DE-06-09
    • US: 77DA-10-09

VOLTAGE OUTPUT CT SUCH AS SCT-013-030 and other SCT-013-0XX ARE NOT COMPATIBLE WITH THIS BOARD. Only use the SCT-013-000 which is a current output CT.


Stacking Configuration

General stacking information is described in the RPICT stacking page.
RPICT_Stacking


Software Configuration

Legacy firmware

For any units ordered before the 1st of February 2022 the firmware version is version 3. Follow this link below for configuration. If possible upgrade to firmware version 4.
Before 1st March 22 RPICT4V3 Version 3 Configuration
Upgrading to sketch version 4

Configuration via web interface

First make sure the lcl-package is installed if not done already.

wget lechacal.com/RPICT/tools/lcl-rpict-package_latest.deb
sudo dpkg -i lcl-rpict-package_latest.deb

Now starts a server instance on the Raspberrypi using.

lcl-server.sh

You can now access the Raspberrypi configuration server if you point your browser to the link below

http://raspberrypi:8000/

You can now edit the configuration.

An online version of this web interface exists on this link below.

http://lechacal.com/RPICT/config/generator/v1.0.3/index.html

Because the RPICT4V3 version3 does not support auto reset you must use press the white button just after having clicked on the upload to device button.

Configuration via command line

The documentation for serial configuration can be found on this page.
Over_Serial_Configuration_-_Sketch_4

The tool to upload the configuration is called lcl-rpict-config.py. To read the configuration use

lcl-rpict-config.py -a

This produce the /tmp/rpict.conf file containing the configuration of the device.

One can modify this file and write it back using

lcl-rpict-config.py -a -w /tmp/rpict.conf

Files

Unit are sold with the sketch below already loaded.

Default Sketch V4.1.0.


If needed this sketch can be loaded directly from the Raspberrypi following this guide and executing the commands below.

wget lechacal.com/RPICT/sketch/RPICT_MCP3208_V3_v4.1.0.ino.hex
lcl-upload-sketch RPICT_MCP3208_V3_v4.1.0.ino.hex

Simple Python Example

The example python script below will work well with the default configuration.

 import serial
 ser = serial.Serial('/dev/ttyAMA0', 38400)
 
 try:
        while 1:
             # Read one line from the serial buffer
             line = ser.readline().decode().strip()
 
             # Create an array of the data
             Z = line.split(' ')
 
             # Print it nicely
             if len(Z)>10:
                 print ("----------")
                 print ("          \tCT1\tCT2\tCT3\tCT4") 
                 print ("Vrms     :\t%s\t%s\t%s\t%s" % (Z[8], Z[9], Z[10], ""))
                 print ("RealPower:\t%s\t%s\t%s\t%s" % (Z[1], Z[2], Z[3], ""))
                 print ("Irms     :\t%s\t%s\t%s\t%s" % (Z[4], Z[5], Z[6], Z[7]))
 
                        
 except KeyboardInterrupt:
        ser.close()

To run this first of all make sure you have python-serial package installed

$ sudo apt-get install python3-serial


Then run the command below to download the script.

wget lechacal.com/RPICT/example/RPICT4V3_DEMO_03.py.zip
unzip RPICT4V3_DEMO_03.py.zip

and run it using

python RPICT4V3_DEMO_03.py

Data Output

The default data output is:

NodeID P1 P2 P3 Irms1 Irms2 Irms3 Irms4 Vrms1 Vrms2 Vrms3

Real Powers are computed using the following rules:

P1 -> CT1 & V1
P2 -> CT2 & V2
P3 -> CT3 & V3
Irms4 -> CT4

P1, P2 and P3 are active power (or real power).

These rules can be modified in the configuration if needed.

Other output type can be streamed out. This should be configured in the unit.

All outputs type available are

  • Vrms (V)
  • Irms (A)
  • Real Power (W)
  • Apparent Power (W)
  • Power Factor
  • Estimated Power

Restore Default Config

You should have received a key when acquiring the unit. Use this key to download and restore the default configuration.
If the key was XXXX then execute these commands below. Replace XXXX with your own key.

$ wget lechacal.com/hardware/c/XXXX.conf
$ lcl-rpict-config.py -w XXXX.conf

Emoncms Config (Emonhub)

Make sure you read this first.

For default configuration.

 [[11]]
   nodename = RPICT4V3
   hardware = RPICT4V3
   [[[rx]]]
       names = P1,P2,P3,Irms1,Irms2,Irms3,Irms4,Vrms1,Vrms2,Vrms3
       datacode = 0
       scales = 1,1,1,1,1,1,1,1,1,1
       units = W,W,W,A,A,A,A,V,V,V

Enclosure

Enclosures kit are available as a 3D printed product. Link to the shop.

Both Raspberrypi 3 and 4 format are available.


Related Pages

Howto_setup_Raspbian_for_serial_read

Gen3_Passive_Component_Setup

How to calibrate the Voltage Port

Update RPICT firmware (CT7V1/CT4V3/CT8)

Use Emonhub with RPICT